Am J Pharmacogenomics 2004; 4 (6): 371-381

نویسندگان

  • Alicia B. Berger
  • Phillip M. Vitorino
  • Matthew Bogyo
چکیده

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371 1. Proteomics – What Are the Tools? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 2. Activity-Based Probes and Their Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 3. What is an Activity-Based Probe? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 3.1 The Reactive Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 3.2 The Linker Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 3.3 The Tag Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 4. What Are the Targets of Activity-Based Probes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 5. Applications of Activity-Based Probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 5.1 Identification of Biomarkers for Human Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 5.2 In Vivo Imaging of Enzyme Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 5.3 Small Molecule Screening and Target Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 6. Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 The genomic revolution has created a wealth of information regarding the fundamental genetic code that Abstract defines the inner workings of a cell. However, it has become clear that analyzing genome sequences alone will not lead to new therapies to fight human disease. Rather, an understanding of protein function within the context of complex cellular networks will be required to facilitate the discovery of novel drug targets and, subsequently, new therapies directed against them. The past ten years has seen a dramatic increase in technologies that allow large-scale, systems-based methods for analysis of global biological processes and disease states. In the field of proteomics, several well-established methods persist as a means to resolve and analyze complex mixtures of proteins derived from cells and tissues. However, the resolving power of these methods is often challenged by the diverse and dynamic nature of the proteome. The field of activity-based proteomics, or chemical proteomics, has been established in an attempt to focus proteomic efforts on subsets of physiologically important protein targets. This new approach to proteomics is centered around the use of small molecules termed activity-based probes (ABPs) as a means to tag, enrich, and isolate, distinct sets of proteins based on their enzymatic activity. Chemical probes can be ‘tuned’ to react with defined enzymatic targets through the use of chemically reactive warhead groups, fused to selective binding elements that control their overall specificity. As a result, ABPs function as highly specific, mechanism-based reagents that provide a direct readout of enzymatic activity within complex proteomes. Modification of protein targets by an ABP facilitates their purification and isolation, thereby eliminating many of the confounding issues of dynamic range in protein abundance. In this review, we outline recent advances in the field of chemical proteomics. Specifically, we highlight how this technology can be This material is the copyright of the original publisher. Unauthorised copying and distribution is prohibited. 372 Berger et al. applied to advance the fields of biomarker discovery, in vivo imaging, and small molecule screening and drug

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Current Awareness on Comparative and Functional Genomics

Abee T, Van Schaik W, Siezen RJ. 2004. Impact of genomics on microbial food safety (Review). Trends Biotechnol 22: (12) 653. Alaoui-Jamali MA, Dupre I, Qiang H. 2004. Prediction of drug sensitivity and drug resistance in cancer by transcriptional and proteomic profiling (Review). Drug Dev Res 7: (4-5) 245. Aldred S, Grant MM, Griffiths HR. 2004. The use of proteomics for the assessment of clini...

متن کامل

Correlation between Plaque Eccentricity and Vessel Remodeling in the Human Femoral Artery: a Morphology Investigation by High Resolution MRI

wall thickness (B) can be calculated by CASCADE automatically. Fig 2-3: Cross-sectional T1 weighted images show examples of atherosclerotic femoral arteries with eccentricity index of 0.27 and 0.83. They have remarkably different morphologies, but the NWI values are similar (0.80vs.0.85). (Outer wall: light blue; Lumen: red circle; Calcification: dark blue) Reference: 1. Ohara T, et al. AJNR, 2...

متن کامل

Exudative pharyngitis possibly due to Corynebacterium pseudodiphtheriticum.

References 1. Sweeney K, Cantwell M, Dorothy J. The collection of Aedes aegypti and Ae. albopictus from Baltimore, Maryland. J Am Mosq Control Assoc 1988;4:381-82. 2. Donnelly J. Aedes aegypti in New Jersey. J Am Mosq Control Assoc 1993;9:238. 3. Bequaert J. Aedes aegypti, the yellow fever mosquito, in Arizona. Bulletin of the Brooklyn Entomological Society 1946;41:157. 4. Murphy D. Collection ...

متن کامل

Quadriceps myostatin expression in COPD.

REFERENCES 1 Harari S, Caminati A. Pulmonary Langerhans’ cell histiocytosis. Eur Respir Mon 2009; 46: 155–175. 2 Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov 2004; 3: 739–748. 3 Bakker JA, Bierau J, Drent M. Therapeutic regimens in interstitial lung disease guided by genetic screening: fact or fiction?Eur Respir J 2007; 30: 821–822. 4 Coulthard S, Hogarth L. T...

متن کامل

Psychiatric genetics--the new era: genetic research and some clinical implications.

Impressive advances in the last decade have been made in the genetics and neuroscience of neuropsychiatric illness. Synergies between complex genetics, elaboration of intermediate phenotypes (Egan et al. (2004) Schizophrenia. London: Blackwell) and novel applications in neuroimaging (Bookheimer et al. (2000) N Engl J Med, 343, 450-456) are revealing the effects of positively associated disease ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005